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NATIONAL ADVISOFW COMMITTEE FOR AERONAUTICS

DIVERGENCE OF SWEPT WINGS

By Franklin W. Diederich and Bernard Budians@

. SIIMMARY,’

An analysis of the divergence of swept titapered aniLtapered wings
with stiffnesses varying as the fourth power of the chord has leen
performed and checked experimental-ly. The results are presented in a
set of charts and approximate formulas suitable for quic~ eethates of
the divergence dynamic pessure and hence the divergence speed.

These results indicate that the divergence speed &ops rapidly
as sweepforwsrd increases to a%out 40° but that wings with moderate or
large sweephack cannot diverge. The location of the elastic axis is
found to affect the divergence syeed most at low angles of sweep, where
movement of the elastic axis forward (or the aerodynamic center aft)
Yaises the divergence speed. The effect of wing ta~er is to increase
the divergence syeed of essential& unswept Wngs and to decrease the
divergence speed of wings with moderate and large angles of sweep in
the case of the prescribed stiffness Vmiation. Evidence iS presented
to indicate that these,effects may not le.observed for actual stiffness
variations, in which cases a more refined analysis must he resorted to.

INTRODUCTION

The emphasis on the use of mept%ack or sweptforwsrd wings for
high-speed flight has created widespread interest in the aeroelastic
behavior of swept wings. The present paper is concerned with the
theoretical determination of one of the most fundamental aeroelastlc
parameters, the wing divergence speed.

The divergence of wings or ta31 surfaces is an instability
phenomenon which results from the interaction of aerodynamic and
structural forces. If a wing or tail is given a deflection of
arbitrazy magnitude, the aerodynamic forces often act in such a way
as to increase the given deflection, whereas the structural forces
always tend to decreaee the deflection. Since the aerodynamic forces
increase with the flying speed, whereas the structural forces are
independent of it, a speed will often exist at which the two sets of
forces are exactly in balance, so that they tend to maintain the given
deflection. This speed is known as the divergence speed, since any
further increase in speed causes the aerodynamic forces to predominate
over the restraining structural forces pd tends to increase any
deformation until structural failure occurs.
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The theo~ of divergence of unswept wings has reached a considerable
degree of refinement. Since H. Reissnerrs original snalysis of the %

problem (reference 1), e great &eal of material has been published on
this subject both in the Utited States snd in Great Britain (for instsnce,
references 2, 3, and 4); the latest methods treat arMtrery stiffness
veriation (reference 2) and account for aerodynamic inductioa
(references 3 and 4).

.

T&e -sis of the divergence of swept wings is complicated bY
the fact that, unlike the case of unswept wings, the air forces depend
on the hendhg deformations as well as on the twisting deformations.
A first approximation to the solution of the problem is presented in
reference ~ by means of a “semirigid” approach that does not take into
account spanwise mzciation of the wing distortion.

The present paper gives the results of a more exact snalysis that
co~iders the effect of elastic bending and twisting along the wing syan
Theoretical derivations are given for the divergence speeds of swept
wings with constant chord end constent flexural and torsional stiffnssses
along the span, as well as for swept wings with Mnesrly varying chords ~
and with flexural and torsional stif’fnessesvarying quarticdly with
the chord.

.
The results of the theoretical analysls sre presented in

.

curves of nond~nsional parameters from which the divergence syeed can
be estimated fo~ a given design. .

In order to verify the theory and establish the effects of the
aesumptfons involved, a limited number of tests were made in the

1

Langley k.>foot flutter research tunnel’on models of const~t chord
i

and stiffness at lowl+fachnumbers. The results of these tests sre
presented and sre compared with the theory.

.
SYMBOLS

A

.
a

%

c

asgect ratio
(~o:~~=)

(

q cos%meelcr2L2
dimensionless psrsmeter

(GJ)r )

vslue of parameter a at divergence

( )q cos%ecrL3tmA
dimensionless pszzameter

(EI)r

value of parsmeter d at dlvergsnce , ‘

chord, measured perpendicular to elastic’axis, feet

.,!

. . . . . .
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Cr . chord at effective root (fig. 1), feet

.

.
Cjj

ICI

(q:

el

GJ

(~J)r

k

Kl, K2

-. z

L
~

M.

%

%

%

~

.

.

Y

effective chord at tip (fig. 1), feet

effective bending stiffness in planes perpendicular to
elastic axis, pound~feet2

. bending stiffness at effective root, pound-feet2

distance from elastic exis to aerodynamic center
(positive forwexd), fraction of chord

effective torsional stiffness in planes perpendicular to
elastic axis, pound-feet2

torsional stiffness at effective root, pound<eet2

chord ratio, c/~

cons-tents

running air load slong elastic axis, pounds per foct

len@h of one wing along elastic axis (see fig. 1), feet
.

free-stream Mach number

critical Mach number of section perpendicular to
elastic.exis

section lift-ourve slope, per radian

effective section lift-curre slope, Ter radian

-c yressures Pounti per squsre foot (&)2
,2

dpardc pressure.at divergence, poundksper squsre

()5D2 .

free-streem velocity, feet per second

foot

free+treamvelocity at divergence, feet per second

component of fre+etreem velocity normal to elastic EXisj
feet per second

distance along e“ktic axis (see fig. 1), feet

*
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effective angle of attack of a section perpendicular to
elastic axis, radians

semispan position along elastic axis (y@)

local dihedral sngle, radians, or slope of wing deflection
cuqve at elastic ~is (see fig. 1).

sngl.eof sweep measured to elastic exis, positive for
sweepback, degrees

taper ratio (/)Ct Cr

density of air stream, slugs per cubic foot
●

engle of twist in a plane perpendicular to elastic sxis,
radians

THEORETI;ALRESULTS

Untapered Swept Wing=

A theoretical aaalysis of the divergence d a swept wing
chord (fig. l(a)) end stiffness is contained in the appendix.
analysio involves the following limitations and assumptions:

of uniform
The

(a) Aerodynamic induction is tdcen into account only insofsr as
an over+ll correction is applied to strip theory

(b) Aerodynamic as well.as elastic forces sre based on the
assumption of small deflections

(C) The wing is clamped at the root perpendicular to a straight
elastic sxis (see fig. l(a)), and all deformations sre given by the
element~y theories of bending and of torsion about the elastic exis.

Within the limitations of these assumptions an exact theoretical
solution for the divergence speed is obtained. The solution consists
of a relationship between two nondimensional psrameters~

.

(1)

..

.

-.

-.

.
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and,
..

..
qD cOs2me+3t= L

d.~=
● (EI)r
.

(2)

1 whicl+is presented in figure 2.

/
It is seen that the ratio of these parameters

I :=[tiHt=A (3)

I depends only on the known geometrical and physlcel parameters of the
problem. Thus, from the theoretical plot of aD agaiIISt dD/aD shown

●

1
in figure 3, the divergence speed csnbe o%tained for any particular
uniform wing ● In order to cover the entire range of values of the
independent pemmeter, it is convenient to ylot dD against aD/dD for

.
. I ~~. large positive and.negative values of dD/aD.

I . Tapered Swept Wings

A theoretical solution for the divergence speed of Mnesrly tapered
swept wings (see fig. l(b)) has also been effected in the appendix.
The assumptions listed in the foregoing section apply to this case as

well. The bending and torsional stiffnesses ere assumed to very as
the fourth power of the chord; this vsriation is resl~zed for a wing
having geometrical.lysimilsr cross sections, such as a solid wing or one
all structural dimensions of which ere proportional to the 10CSJ.chord.

.

-.

Theoretical curves sindlsr to those o-ffigure 3, relating the
nondimensional perimeters aD Slld dD, have been computed for swept

wings having taper ratios L of 0.2, 0~5, and 1.5. The ‘variousbranches
of these curves, together with those for the uniform wing (taper

ratio 1.0) are, for convenience, given separately in figure h(a), l(b),

and 4(c).

.. Effective Lift-Curve Slope

In the calculations of the lift acttig on.the individual wing secticns,
it has been ass~d that the aerodynamic interaction of ~he sections = te
ne~ected if ~ ove~ sp~z co~ection iS ~de to the section Iift-cur_Ie
310pe. Thus} the value of me to be used.is the tw~nsional valu9 ~

!.,.... -7——— -

,1
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for sections normal to the elastic axis multiplied by a suitable correction
factor. In reference 2, Shornick, in computing the divergence speed of
unswept wings by strip theory, applies the aspect-ratio correction

. A
F?

%=%— $+2
(4)

For the case of an unswept uniforruwing with ~= 3.14, this assumption

yields a diver~ence speed that differs by less–than 1 percent tiom the
result calculated by ~ldabrand and Reissnar (reference 3) b.ylifting-line
theory. (Tha parem&er

may be compared directly

Equation (4) may be
used in reference 6. H

J3 calculatedly l~ing-lina th&o& inref~rence 3

with ~
f

%

G
of th8 present paper.)

.
extended to swept wings by means of the reasoning
the air forces sre considered to act in planes

perpendicular to the elastic”axis instead of parallel to the plar& of
symmetry, the following relation is obtained

“.

.

%=% A (4a)
A+kcosA

This approximation for finit~pan effect may be used for sutmonic and
subcritical Mach numbers. For supersonic and supercritical Mach num%ers,
it is i~pplicable; no span correction is avtiable at present for these
speed ranges. Neglect of the finita+pan effects, however, will always

.

tend to give conservative results.

Location of the

If the results Of tk preCadi*
v~rg, it is nacess~ to assume that

Effective Root

analysis are appliedto an actual
the wing is clamped.along a line

;5Yp5ndicuL3rto the elastic axis. Fromtha data and-the analysis
;resented in reference 7 it appe~s that the amount of wing ‘mist Can —
~:’estimated closely by assting the wing to be clamped at a line
~~~~wh the intersection of the elastic axis and the side of the fuselage,
~f the carry-through structure is fairly rigid.

The bending deflections are estimated in reference 7 by considering
--:~~~i~ supported flexibly at a line through the innem.ost point of the ,

.-

‘“’’Tiw eQa (in the cma of a sweptback~l=) or of the leading eQe.--_&
(~n the case of a sweptforward wing). This effect may be taken into ..
Sccolmt in tha preceding @sis by ~dfifyi~ the root bo~d~ conditio~.

If the carry-through structure is fairly rigid the rasulting divergence
QWed iS tha same, for all practical purpses, as the value obtainsd by

.
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.

considering the wing mounted rigidly at a line through the intersection of
the elastic axis and the side of the fuselage. This line is consequently
considered the effective root of an actual wi@, as shown in figure l(c).

1
,,.. APPLICATION OF TEE TEEOREZKMLRESUIXS

I Selection of the Aerodynamic Parameters
[ .
.

.

.

.

.-.

●

Both the section Mftiurve slope ~. and the aerodynamic center

(and co~quentl..y the distance from the aerodynamic center to the elastic
Sxis, vary with Mach number and, in the transonic range at least,

with the angle of attack. The parameters shouldhe chosen at the angle
of attack nesr thp design value which yields ,themost conservative results.
The choice of the Mach number depends on the purpose for which the
divergence speed or dymsmic pressure is calculated. ‘

If the divergence speed is calculated for its own sake, the psmaneters
should be chosen at the Mach number corresponding to the divergence syeed;
resort to a trisl and error procedure ~ therefore be necessary. If, on.

. the other hand, it M desired to calculate the divergence speed or @cnamic
pressure as a reference value for one of the other aerod.astic phenomena,
the aerodynamic parameters should be chosen at the Mach number of interest

.’ for the particular phenomenon. The dynsmic pressure calculated in this
manner wiM. not usually be the true value but appears to be the divergence
value only at the given Mach number and’will vsry with Mach number. IX’
the variation of this reference divergence -c pessure 9.rJis

plotted against Mach number and the actual dynamfc pressure q is plotted
on the same graph, the intersections of the two lines will.determine the
true values of the divergence Mach number and dynamic pressure; this
procedure therefore constitutes another way of calc~ati~ the divergence
speed. Such a plot is shown in figure 5 for a straight and a sweptfommrd
wing designed for highspeed flight.

The vslues of the aerodynamic psra?netars~e “lestobtained fron
experimental section data for the lift and pitching moment of the given
se”ctionat the Mach number of interest. H such data are not avafiable,
the section lift-curve slope m. may be approximated by the Glauert+
Prandtl and Ackeret relations in the subsonic and supersonic regions,
respectively, and by an srbitrsry constant value which depends on the
critical.Mach number in the transonic region, as indicated”in figure 6.
The aerwiymamic center is located near the quarte~hord point at subsonic

. speeds and at 40 to 45 percent of the chord at supersonic “speeds. Its
location at transonic speeds iS not well established; it mqy move forw~d
of the qwter+hord point, however, before receding to the supersonic

. position.

.
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The aerodynamic parameters
the section lifwurve slape is

of the Wrves

sre selected for

NACA TN No, 1680

a given Mach number and
corrected for finite-span effects in the

manner previously indicated. With these parameters an~ the given geometric
parameters the ratio dD/aD may be deterncinedfrom equation (3). The

value of aD or dD is then obtained from figure .$and the divergence

dynamic P~SS~e c~’c~atedfi~e ither of the two fouowt irelations:

.

~D = aD (GJ)r L

~c~3 COS2A ‘lcr

= dD
(H)r

cot A
~c&3 COS2A ‘

The divergence speed is given by the relation

(5)

(5a)

(6]

H the value.of qD as calculated in this manner is negative the
wing cannot diverge, since a negative dynamic pressure does not correspond
to any real speed. A negative value, however, is still useful as a
reference value.

Unless the wing under consideration is solid or has geometrically
similsr cross sections along the span, it must he kept in mind that the
actual divergence speed cm dynsndc pressure may be below that calculated
by this methailfor reasons cited subsequently in the “DISCUSSION.”

Use of Approximate Formulas

The relation between the values aD end dD may be approximated -
closely by a straight line. The ~eement between the exact curves and
curves representing the linesr relation is seen in fi~es 2 and 3 in the
case of a uniform wing. Xl?omthe linesr approximation an expression for
the divergence dynamic pressure may be ohtahed of the following form:

()(~)r ~

[

K1 1
~D =

()]

(7)
D18CJ3 COS?A ‘lb (GJ)r ~

tan A1–%2 (EI)r elcr——

1

*

-—

“.

.-

.

~.—. - - ..’ -— -—-— n-37-.-——— -.,-.—~
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where the constants K1 and K2 are given in the following table:

0.2 2.81 0.614

5 2.74 .497
i:o 2.47 ● 390
1.5 \ 2.22 .326

. I

Equation (7) may be used with almost the same accuracy as the curves
of figure 4. This equation should be paticulsrly convenient for cd.culating
the stiffnesses required for k given value of the @namic pressure at
divergence.

As a check on the theory several divergence tests on uniform swept
wings were made in the Langley 4.>foot flutter resesrch tunnel. In the
first series of tests a thin plate of 24S-T aluminum allo~, 5 inches
bv 30 inches by 0.126 inch, was held in the tunnel essentially as
shown in figure l(a); the angle of sweep was vazziedby means of the
rotating root fixture. The experimental divergence dynamic pressure was
tsken to be the highest vslue at which the wi~ would remain in an
unreflected position when the root section was at zero angle of attack
relative to the true air stresm, IWom the experimental data obtainad,
shown in table I, the divergence Qnamic pressure is plotted against the
angle of sweep in figure 7(a). The variation of divergence @manic
pressure with sweep obtained from the theo~ of the present paper is
also shown in figure 7(a). No e~erimental data have been obtained for
sweephack; the wing fluttered, rather than dimrged, at zero sweep, and
flutter would undoubtedly be critical at any angle of sweepback. However,
the agreezumt between the present theory and experiment for angles of

. sweepfozwsrd up to 40° is excellent.

A similar series of tests was run for another rectangular aluminum
wing, ~ inches hy 24 inches by O.Og~ inch. (See table 11) % results
given in figure 7(b) slso shcw good agreement between theory and expermnt.

A third series of tests was run on flat-plate ahninummodels,
5 inches by 30 inches by 0.125 inch, that.were not rectangular but were
clamped at the root and cut at the tip parallel to the wind stream
(fig. l(c)). A seperate model was used for each angle of sweep, but
the length along the leading edge was held conEia& at 30 inches. These
wing plan forms do not correspond to those assuned for the theory, b’ut
they do represent more closely conventional .%-ept+@ plan forms. The
experimental res~fitssre presented in table I aa.iplotted in figxre 7(c)-
The theoretical.variation of the divergence MC ~es~ure tith sweep

L ‘—-----~- .,. -— -, . .. .;.., .. . . *-Tw... -—-- -~c- ,y. .-+-.. .~.’.,~,.. .,-----
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obtained by
is shown by

using the effective root discussed previously (rC=: ;-,.;..
the solid–line curve. The variation obtained ~P.-.... -.

the effective root is considered to be at the line through ti.,,{,.,.1 ,
---- .,,.-... .

point of the leading edge (root B of fig. 7(c)) is shown ~~.t:.e-”:~~<~~””::.
curve”. It appears that the use of root A yields conservative ~.,....l.,-+. J : ..-
all sweep -es Of practical co~e~~ but tkt the”results obiu:~.: Lj;
using root B zre on the average in some~~t better @reement ‘d~:-~k!~“..“.
data for low @ medimn angles of sweepforward.

The curves of figure 7 ere based on calculated values of (GJ)r

and (EI)r. The section aero@namic center was assumed to be at

the c/k point, so that el is 0.25. A

assumed and corrected for span effects as
Compressibility effects were neglected in
test Mach nnhers were too low to werrant

DZ!3CUSSIOl?

section lift slope of 2fi >-s:

shown h equation (ha).
all comparisons, since the
a correction.

The aerodynamic and structural assumptions made impose limitations
on the accuracy of the analysis. The aerodymemic assumptions are
concerned with the magnitude of the deflections involved as well as the
treatment of the aerodynamic induction and compressibility effects. T&
assumption of amal.1deflections made in obtainipg the effective velocity
CoEr&)OnentVA (see appendix, equattin (A~a)) yields results which are

too 10W at high engles of sweep. The alr forces are consequently
underest~ted and the divergence speed is overestimated. The correcticm
for aerc@tic induction is only approximate; it is sti@e to *e,.
however, and yields good .expsrlmentalegreement. For most airplanes the
divergence speed -s in the tranmnic -orsupersonic region, where the
induction effects ~e greatly diminished, so that no correction need
ordinarily be applied. The manner in which compressibility is taken into
account in the analysis has not been checked experimentally and is
consequently somewhat uncertain.

The location of the aerodynamic center may not le known verg
accurately; fortunately, however, the divergence speed of a swept wing
16 not very se~iti~e to t~ aero-~enter location at l~ge angles
of sweep, as may be seen from figure 4(c). The change in dD, end hence
the change in divergeme speed, ti~ le foti to be fairly small even fOr
rather lerge changes in the value of el produced by changes in the

aerodynamic+enter location or elastic-axis location. At bw S@~S of
sweep the effect of the location of the aerodynamic center relative to
the elastic @S iS wch~re pronounced; movement of the elastic exis
fo~ard or the a~romc centerrearward will tend to”raise %*M
divergence speed. E the aerod-c center is behind the elastic axis,
negative v~~es will usually be obtained for @e dym.mic pressure at

di~ergence, so tkt divergence will be tipossible.

-.:?
.
.-r.

-r. .

.

:.. .:
I

““a ---,.-,J=-7--XF-W --- —. —.IY-.. _~ . -------- —.-
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The most important of the structural assumptions involves the existence
of a straight elastic axis, which permits bending and torsion to be treated
independently. This assumption appesrs wsrranted in most cases. Although
the e=ct boation of this axis is often difficult to ascertain, only an
appro-te value is needed in view of the foregoing consideration, at
least for lsrge angles of sweep. Heer the wing root, where the elastic–
axis location is most uncertain, swept wings are so stiff that the location
is immaterial.

1 .

The assumption of the effective root at the location indicated in
figure l(c) (root A of fig. 7(c)) leads to conservative results. This
assumption appears, therefore, to be preferable to the assumption of the
root at a point fsrther ou$hoard, suoh as root B of figure 7(c). On the
other hand, the assumption of the effective root B leads to results which,
at least in the case of the flat-plate models tested, agree somewhat more
closely with experiments for angles of sweepforward up to shout 45°.

The insensitivity of the divergence speed to the relative location
of the aerodynamic center and the elastic axis indicates that the effects
of bending Tredomlnate at large angles of sweep (actually at large values
of dD/aD). Even at low values of sweep, bending is quite significant;

the divergence phenomenon of swept wings should therefore be referred
to as “bending-torsion” divergence rather than %orsionelt! divergence
as in the case of unswept wings.

The stiffness variation used in the analysis for tapered wings

(EI and ~ V~ as C4) M realized for wings with geometrically
similar croes sections; it is obtained for solid wings and closely
approximates that of actual wings with a taper ratio of the order of 0.2.
For higher taper ratios, actual wings exe more flexible at the tip than
the fourtl+power variation would dictate. In order to investigate this
effect, the parameter aD has been plotted against taper ratio in figm~e 8

for unswept wings with stitfness variations dictated by constant bendlng–
stress levels. The assumption has been made that the torsional stiffness
is proportional to the flexural stiffness which, in turn, is based on a
load distribution given by strip theory. The computations for the
divergence speed were perfomd by a method siMbr to that of reference 2.
Figure 8 indicates that the divergence speed of wings with this type of.
stiffness distribution is in general lower than tkt obtained for wings
the stiffness of which follows the qusrtic variation. The divergence sP=ei
of actual wings may be e~ected to lie between the two c’~es of figure 8
and will in general be lower than that for wings the stiffness of which
follows the fourtl+power vsriation. This point must be considered when
figure.4 is used; the results furnished by the c~es of figure 4 nay be
somewhat unconsemati.ve for-actual wings.

The effect of sweep ~ be seen from figures 3, k, and 7. Figwes 3
and h show that as the sweep angle (and henoe the psra@er dD/e~) is .

increaset negatively, t’hat1s, towerd increased sweepforwmi, the
parsneter aD (and hence the divergence s-peed)de+reases rapidly, ~ -~

. .v=----- —— -- --.,+-.+3. .** ● ., --r--: -- - -sT”-
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other physicsl ysrameters remaining the ssme. Beyond a certain angle’of
sweepforward the cos A term in the psrsmeter aD bec~s dofi~t

and tends to hcrease the divergence speed again as seen.in figure ?.
.

Sweptback wings with a vslue of dD/aD larger then about 2 and positive

values of el, which normslly correspond to subsonic speeds, cannot

diverge; nor csn any sweptback or unswept wing diverge for negative values
of e~ wh}ch mey exist at supersonic speeds. In either case a negative
divergence dynsmic pressure is o%tained. This fact does not ~reclude
the possibility of flutter in these cases, however.

The effect of taper on the divergence of swept wings of the assumed

stiffness variation (GJ and RI vsryhg as c4) is seen from figure 4.
For positive values of el (subsonic case) and positive or small negative

values of the sweep angle, conventional.ta~er increases the divergence
speed; for all other configuration it decreases the divergence speed.
The effects of inverse taper sre the opposite of those of conventional.
taper. These considerations must le modMied in the case of actual
wings, because of their deviation from the assumed stiffness distribution,
so that either the curves of figure 4 must be used with some degree of .
conservatism or more refined analyses must he resorted to.

‘.
Although the low=syeed wind-tunnel tests for divergence have been

performed only on umiform wings, they serve to corroborate the theoretical
a.nslysiefor uniform- and hence, indirectly, that for tapered wings,
since the assumptions me tlu.same in either case. The rapid decrease . -
of divergence s~eed with increase in sweepforwsrd agrees with the predicted _
vsriation both qualitatively and quantitatively (up to about 40° sweep
forward). This agreement indicates that the assumptions made concerning
the structural and aerodynamic behavior (at low speeds) are justified.
At v~ues of Sweepfarwud alove about 400 the observed increase in
divergence speed falls short of the predicted ficrease. This olmervation
agrees qualitatively with the statement made previously that the analysts
would tend to overestmte the divergence speed for large angles of sweep,

It is difficult to make a &ect comparison with the results of the
stiplified.appxoach of reference ~, but it is quite apparent that since
the nethod of this report takes account of the spanwise variation of
bending and twisting it should furnish more reliable results. If the
first.natural betii~ @ torsio~ frequencies of a uniform cantilever

ma
beam are substituted in the expression for —

~D
of reference 5, a

relation may be obtained for qD which will have both the same form as
equation (7) and the sane value of K1 iiia pro~er finite-span correction _ ‘

is ap21ied; the vslue of ~, however, will be 0.299 instead of 0.390,

dkcregmcy iniicates that, if the results of a
applied.to acim.slswept wings~ a certain amount

●

semirigid analysis

of caution must be

= 1.0),

are

exercised.
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CONCLUDING REMKRKS
.

.-

On the basis of certain assumptions theoretical results have been
obtained for the divergence of miform and tapered wings. These results
=e presented in the form of charts end approximate formulas suitable

—

for obtaining quick est~tes of the divergence dymamic pressure or speed. “
A limited number of low-speed wind-tunnel tests on untapered models give
good ~eement with the theoretical results for sngles of sweepforwmd
up to 40° and appeer to @stify the assumption made in the anslysis.
The results indicate the following conclusions:

1. The divergence speed drops rapidly as sweepforward increases
to about 40°. Wings with sweep%ack heyon.da fairly low value cannot
diverge.

up

.-
.-

2. Moving the elastic ads fommrd raises the divergence speed
appreciably for low angles of sweep but”has less effect at higher sweep
angles. Wings with the elastic axis forwerd of the aerodyna?dc center
(supersonic case) can only diverge for moderate or lerge angles of
Sweeyforwsrd.

.
,

3. For most practical cases, the effect of conventional taper is to
increase the divergence speed of essentidl.y unswept wings and to decrease.
the divergence speed of tings with moderate and large angles of sweep if
the stiffness vsries as the chord to the fourth power. For sttifness
variations closer to the ones which ere obtahed for actual wings, this
effect my not be observed. In order to oltain accurate results in these
cases a more refined anslysis must be resorted to.

Iangl.eyMemorial Aer~nauticsJ.Laboratory
Hationsl Advisozy Committee for Aeronautics

Langley Field, Vs., Aprfi 16; 19h8

-,
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ANIUSti OF THE DIXERXl?CE

. AsBL13nptions

NACA TN No. 1680

OF SWEPT wIm-s

ansksis involves the following Mnitaticms end assumptions:

Aerodymunic induction is kken into account only insofer as
an over-en correction is applied to strip theory

Aerodynamic as well as elastic “forcesere baaed on the
assumption of smill defI-ections

The wing is clamped at the root perpendicular to a straight
ektic axis (see fig. 1), and all deformations sre
considered to be given by the elementary theories of
lending and of torsion about the elastic sxis

-.

Aerodynamic Forces
*

.
In keeping with assm@ ions (a) and (b), the force per unit width
wing section in a plane perpendicular to the elastic sxis resulting
bending and twisting defomationb is given by

2 = %ae $‘A2C (Al)

. w’here ue ~d V*. sre the effective angle of attack and the component

of the free-tream velocity in the plane perpendicular to the elastic
axis, respectively. If the fre=treem velocity is resolved into three
components, one along the local tangent to the elastic exis, one perdlel
to the chord, and one peryendiculsr to the other two, the effective
angle of attack may be obtained as the ratio of the third component to

.-

the second and the effective velocity as the vector sum of the two
components. Thus,

tan ae =
sinq cos A — coa q sin l_’sin A

(A2)
cos Q cos A + sinq sin r sin A

and

~A2 = V2 F(coeq COSA + sing sin”I’sin A)2.tL

The most convenient
of vector analysis.

~.

+ (sin? cos A – 1
‘2cm q sin I’ sin A) (A3)

way of obtaining these’relations is probably by use

,,

.
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.

For small values of (p and r these relations simplify to

.- .
ae ‘v –r tan A

JTA=VCOSA l+ae2

so fJdLt, for smhll deflections, equation (Al) cen %e expressed as

2=(q– r t- A) ~ ~V2COS%C

(Ah)

(A5)

(A5a)

follows:

(A6)

The moment of this force about the elastic sxis is assumed to be
given by the product 2elc. The presence of a mment at zero lifk due

to csmber will not affect the results in any manner, sinoe the divergence
speed depends only on the rates at which the aeromic and structural
forces increase with the deformations.

Differential Equations

.
* The differential equations of bending and torsion of the wing

referred to the elastic axis ere

*

(A7)

(A8)

respectively. Substituting the smell-deflection eqxression for 2
(equation (A6)) into equations (A7) and (A8) yields the two stiultsneous
differential equations: ,

r t=A) (A9)

(ql-r tan A) (Ale)

.
These equations are subJect to the following bound~ conifitions:.

Zero locsl dilm~ral and twist at the root,

r(o)=O (All)

q?(o]=o (Alla)

●v---—-.,., -—”—--v--~ ~_. .......... ,.-
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,

Zero moment, torque, and shesr at the free end,

.

()~Jd# .~

y=L

()*(& o
dY2~=L =

(M2)

r

(A12a]

(u2b)

--

Equations (A9) and (AIO) msy he solved by numericsl methods for
any arbitiary stiffness and chord variation. b the case of untapered
_ and 1~~~ tapered W- with the stiffnesses vsrying as the
chprd to the fourth power, they can be solved directly, as shown in the.
following sections.

Solution for Uniform Wings
,

H the bending stiffness, the torsional stiffness, and the chord
of the wing have constant values of

along the wing span, equations (A9)

pl~~ t~A=

- ~91 =

end (AIO) become

d(cp– r tan A)

-a(cp

where the differentiation denoted by the

and the two dimensionless p~ameters a

–r tmA)

~d Cr, respectively,

(AJ-3)

(~k)

prime is with respect to ~ = ~

and d. are defined by
.

~ coe%~e1cr2L2
a=

(GJ]r

.
q cos~c#tan A

d =
(EI)r

Ilifferentiating equation (A14) once ani caubining
yields the single differential equation

% it!+q~+’tie=o

where ~.cp-rtanA.

(A15)

(JU6)

it with equation (..U3)

(A17)

,
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a [

The generql.solution of this eqtition is
.

3

r

ri~
‘e = Aie (u8).

=1 —

where t’he ri’s ‘we the roots oi’t-hecharacteristic equation

3r+sr+d=O t (~9)

ant the Ai*s sre srbitrery constsnts.

Rco?n

From,

The boundsry conditions for

equations (All) and.(Allaj

%(0)

equations (A12) and (A12a)

From equations (A14] and (A12b)..

Ccett(1)+a~(l)

Subs+ituting equation (A18} into

YQ-

..

equation (A17) sre:

=0

= o

(A20)

(A20a)

= o (A20b)

these %oundary conditions gives

2 q
‘iAie =” o

id

2 (ri2 + a)Aieri = O

i.1

.

J
“The condition tor divergence is that there he a nonvanishing

SOIUtion i’OTthe l.i~S; that is, a solution for which ~ is not

zero along the ent+~e span. Therefore, one or nore of the Airs
—

must
be different from zero (see equation (~8) ). Hence, the determinant of
the coefficients Or the Aits in equations (A21) must ~anish. Thus,

I

,.

‘

I
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t.

I 1 1 I
rp

rle rae r3er3 (A22)

, (r12 + ;“ =
r

( )
r22 + a er2.

(r32 + $“rs ‘0

ere obtained if the cotiinations give rise to roots rl> rz~ and r3

for equation (A1.9)such that equation (A22) or its expanded equivalent
is satisfied. The curve of aD. against dD in figure 2 constitutes a

plot of these criticsl combinations; points on the curve were computed
by assuming values of aD and solving for dD by trial.. ,

Solution for Tapered Wings

For tapered wings the chord vsries linearly and the bending and
torsion stiffnesses.ere assumed to varg as the fourth power of the chord.
Then>

c = kcr

where
#

.

k=l– (1-x)?-j

and X is the taper ratio %/cr “ Furthermore,

GJ= (GJ)rk4

mXI = (llI)#k

The differential equations (A9) and (QO) then become

[
tan A k3r**~+ 8k2r*t + GM’: -d#]+@p=o [A23)

[ 1k2@+41@+~ –a@ta A=O (A24)

where

‘%= d
(1-?$

.

.

-

.

. .

. .

..
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.,

The differentiations denoted by the prhm in eqyations (A23) and (A24)
are with respect to k rather than ~. This .procedureplaces the.“
differentid. equations in the form of the Euler (or Cauchy) eqvations,
which sre easily tractable mathematically.

—

Differentiating equation (A24) once, multiplying it hy k~ snd
combining the result tith equations (A23) and (A24) yields ELsingle
diffe~entid equation in ~:

,k3ae’??+ 8k2QY + (12 + @~t .+ (2w – ~)CLS = O (A25)

The solution of this equation is

3

ae =
F

Biksi (A26)

=1’

where the sits sre the roots of

S(S - 1)(S — 2) + 8s(s – l)+(12+s&-f-(+-@=o

. or

s~ -1-# +-

“dnd the Bits sre =% itrary

The bound- conditions

(6+q)s+(2aT-dT)=o (A27)

cons-tents.● ,

8re:

From

From

mom

equations (All) and (Mla)

se(l) = o

equations (A12) and (A12a)

ae~(k) = O

equations (AA), (A12a) and (AE%)

Substituting equation (A26) into the

.
f

Bi=O

i=l

ape(h) = o

boundsry conditions gives

o

.

(A28)

(A.28a)

(A28b)

-.— ...— --
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Setting the determinant of the coefficients of the ‘ir~ in
equation (A29) equal to zero yields, after sone simplification,

1

i .

1

8$s2

1

=0 (Ajo}

Equation (A30) is very s~ to the corresponding determ.inantal .—
equation @.22) for untapered wings. For particular values of the taper
ratio A, it determines-critical ccmhinations of a end d. Calcu-
lations have been carried out for taper ratios of 0.2, 0.5, and 1.5, snd
the res’ultssre given by the curves of aD. againSt dD/aD and dD

against aD/dD in fi~es h(a), k(b), and 4(c), together with the

results of the analysis for the uniform wing (taper ratio 1.0].

.
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TA3LE I.– KESULTSOF DIWERXHWE TESTS

(a) (expeY@nt) (calc%ked)
(lb/sqft) (lb/sqft)

1 1
, .-

Series 1

5 in. by 30 in. by 0.126 in.; squaretips; el = 0.25;

(GJ)r=13,330 lh-in.2;(EI)r=8,8301~in.2

o %2. 80 178.6
~.o 83.20 8Q.7
14.7 44.21. ko.g
30.0 26.50 27..0
45.0 2k.41 26.2

55.9 24.84 31.1
55.9 24.95 31.1
63.2 26.65 39*7

Series 2
.

k IIL hy 24 in. by 0.0977 in.; squaretips; el = 0.25;

(GJ)r=4,9MI&ti.2; (EI)r= 3,3001kin.2

o a106.90
●

5.0 76.99
14.7 43.10
30.0 26.51
k%o 22.44

163.1
;;.;

2k:7
23.8

23.36 32.0
$:: 23.7k 5095

I Series 3

5 in. by SO in. by 0.125 in.; tips perallelto plane
Of s-try; el = 0.25;

(GJ)r. L3,0501kin.2; (EI)r=8,~l*in.2

I

15.6 79.87
15.5 41.W
30.1. 31.72
45.2
b59●7

28.90
c38.18

74.6 *.62——

aFlutter.
%odelthic~eas, 0.123 inch.
corrected for discrepemcyin thicbesp.

Root A ( Root B
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(a) Assumed constant-chord
wing.

. (b) Assumed taperedwing.

(c)
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Actualwing.

~ Aerodynamic center

\r Shear center
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Figure 1.- Definitionsofgeometrical
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Figure4.- Divergenceoisweptwings.
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Figure 5.- Divergence of a skaiKiIt and asweptforward‘wtis
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